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A B S T R A C T   

Garment transfer from a source mannequin to a shape-varying individual is a vital technique in computer 
graphics. Existing garment transfer methods are either time consuming or lack designed details especially for 
clothing with complex styles. In this paper, we propose a data-driven approach to efficiently transfer garments 
between two distinctive bodies while preserving the source design. Given two sets of simulated garments on a 
source body and a target body, we utilize the deformation gradients as the representation. Since garments in our 
dataset are with various topologies, we embed cloth deformation to the body. For garment transfer, the defor
mation is decomposed into two aspects, typically style and shape. An encoder-decoder network is proposed to 
learn a shared space which is invariant to garment style but related to the deformation of human bodies. For a 
new garment in a different style worn by the source human, our method can efficiently transfer it to the target 
body with the shared shape deformation, meanwhile preserving the designed details. We qualitatively and 
quantitatively evaluate our method on a diverse set of 3D garments that showcase rich wrinkling patterns. Ex
periments show that the transferred garments can preserve the source design even if the target body is quite 
different from the source one.   

1. Introduction 

A garment usually has different sizes to fit customers of various body 
shapes. Most ready-to-wear garments are designed with reference to 
mannequins with standard body shapes. However, for customers with 
body shapes of different proportions, especially those who have 
distinctive somatotype characteristics, a base-size garment fails to pro
vide superior fit and cannot preserve the original design. When choosing 
which garment to buy, the customer’s decision largely depends on the 
design of sample (source) garment, and the customers expect the draped 
garments onto their bodies keep exactly the same design as the source 
garment. Generating 3D virtual garments according to the target body 
shape and then perform virtual try-on not only enables customers to 
preview the fitting effect before the garments are produced but also 
assist in the development of garments suitable for customers with 
distinctive body shapes, which can reduce the design cost but increase 
customer satisfaction. In addition, virtual fitting technology has 

attracted the interest of the entertainment industry [1–3], since it is a 
significant part of movies, video games, virtual- and augmented-reality 
applications, etc. 

A few techniques [4,5] have been proposed to automatically perform 
design-preserving garment transfer from source to target body. How
ever, Brouet et al. [4] is sensitive to modeling setup and [5] will struggle 
in a case when the target body is very different from the source. 
Furthermore, both of them are computationally expensive, making them 
not suitable for online applications. Other established workflows [6–11] 
mainly focus on how to dress a given garment onto target body with a 
fixed pose or shape, regardless of whether the source design is preserved. 
Moreover, existing methods either support garment retargeting for a 
garment with a fixed style [6,8,9] which has limited use, or implement 
garment remeshing using body topology [10,11] which is hard to be 
used for representing garments with complex styles or garments that are 
different from body topology. What is lacking is a garment transfer 
workflow that is design-preserving, capable of distinctive body-shapes 
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and new garment type, efficient in time performance, and supports 
garment meshes with different topologies. 

To that end, we address the problem of efficient design-preserving 
garment transfer for mannequins with distinctive body shapes (see 
Fig. 1). In this paper, we select banana-shaped body as source body and 
pear-shaped body as target body to perform garment transfer. We first 
stitch sewing patterns onto the source and target body using a physical 
simulator, and we use deformation gradients to build cloth deformation 
from the source to target garment. Then, we define garment transfer as a 
decomposition of style-dependent term and shape-dependent term from 
cloth deformation (see Section 3). To handle garments with different 
topologies, we propose embedding deformation gradients into the body 
(see Section 4). By learning a shared deformation space using an 
encoder-decoder network, we separate shape-dependent deformation 
from embedded cloth deformation (see Section 5). Finally, by simply 
applying the learned shape-related cloth deformation to the source 
garment, our transfer method can deform the garment from the source to 
the target body within a short time period, while preserving source 
design. We qualitatively and quantitatively evaluate our method from 
different aspects in Section 6. In summary, the key contributions of our 
approach are as follows:  

• Problem formulation. We propose factoring cloth deformation into 
shape-dependent deformation and style-dependent deformation. 
Then, we define garment transfer as deforming source garment using 
shape-dependent deformation to generate garment on target body 
shape. Once the shape-related cloth deformation is learned, we can 
use it to deform new garments with arbitrary topology.  

• Feature description. By learning a shared deformation space, we 
separate shape-dependent deformation from embedded cloth defor
mation. Our simple but efficient garment transfer workflow is suit
able for characters with distinctive body shapes and garments that 
showcase very rich wrinkle details.  

• Data representation. A network usually takes fixed-size data as input, 
and unaligned 3D mesh would most probably struggle in this case. 
Remeshing garments with different topologies is difficult. We pro
pose embedding deformation gradients into the body, providing a 
dimensional consistent deformation representation, which enables 
unaligned 3D mesh data for learning tasks (e.g. shape analysis, 
learning latent representation). 

2. Related work 

2.1. Physics-based cloth simulation 

Although various professional cloth simulation software is available 
[12,13], physics-based cloth simulation is still a popular research topic 
in the field of computer graphics. To simulate the movement of real cloth 

as well as possible, physics-based simulation (PBS) models different 
types of clothing deformation. Based on force analysis of particles, the 
mass-spring model [14,15] resolved cloth deformation with a low 
calculation complexity. The yarn-based method [16,17] was used to 
simulate woven clothes. Considering that the simulation of 
high-precision clothes would bring a heavy computational burden, 
adaptive cloth simulation [18,19] dynamically adjusts the accuracy of 
cloth to increase the calculation speed. In addition, many researchers 
have aimed to replace elastic forces using position-based constraints 
[20]. To eliminate collisions during cloth simulation, many collision 
handling strategies [21,22] have been proposed. As the most traditional 
method in clothing animation, PBS can obtain realistic and 
physics-compliant cloth dynamics, but it requires intensive computation 
[23,24], making it difficult for it to guarantee real-time performance. 

2.2. Data-driven cloth deformation 

Data-driven cloth deformation methods are designed to reuse cloth 
deformation statistics. Compared with the physics-based method, a data- 
driven approach better ensures efficiency. By determining potential 
collision areas between garments and bodies, Cordier et al. [25] pro
duced cloth deformation effect that is visually satisfactory. The tech
nique DrivenShape [26] exploits the known correspondence between 
two sets of shape deformations to drive the deformation of the secondary 
object. Zhou et al. [27] proposed an image-based virtual fitting method 
that can synthesize the motion and deformation of a garment model by 
capturing the skeletal structure of the character. As a garment genera
tion method for various body shapes and postures, the DRAPE model [6] 
can quickly put a garment onto mannequins with specified body shapes 
and postures with the help of the SCAPE [28] model. Given a specified 
pose and precomputed garment shape examples as input, Xu et al. [29] 
presented a sensitivity-based method to construct a pose-dependent 
rigging solution, which can synthesize real-time cloth deformation. 
The learning-based garment animation pipeline with deep neural net
works [9] enables virtual fitting for characters with different body 
shapes and poses, producing realistic dynamics and wrinkle details. By 
learning a motion-invariant encoding network, Wang et al. [30] learned 
intrinsic properties that are independent of body motion, providing a 
semi-automatic solution for authoring garment animation. Recently, 
with the rise of geometric deep learning [31], data-driven cloth defor
mation technology will usher in a new opportunity. ACAP [32] enables 
large-scale mesh deformation representation with both accuracy and 
efficiency. Tan et al. [33] proposed mesh-based autoencoder for local
ized deformation component analysis. Mesh variational autoencoder 
[34,35] provides a new tool for analyzing deforming 3D meshes, which 
is widely used for tasks such as deformation transfer [36], shape gen
eration [37], etc. 

Fig. 1. Given a base-size sewing pattern and an instance of its corresponding physics-simulated garment, our efficient solution can transfer the garment from a 
standard body to mannequins with distinctive body shapes, preserving the original garment design. Each pair of garments shows the transfer result from the source 
(left) to the target (right) body. 
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2.3. Garment retargeting 

The easiest way to retarget a garment from a source body to a target 
body is to simply apply PBS (middle in Fig. 2) or perform direct defor
mation transfer using deformation gradients between source and target 
body (right in Fig. 2). However, these solutions usually fail to preserve 
the garment design and wrinkle details, making it look like a person 
wearing a wrong size garment. For this reason, many researchers 
[38–40] have focused on how to automatically adjust garment patterns. 
Design-preserving garment transfer [4] can transfer garment models 
onto mannequins whose body shapes and proportions are obviously 
different, but this approach needs to set parameters according to the 
garment types and body shapes. Direct garment editing [41] enables 
users who have no experience in garment design to mix existing garment 
patterns in an interactive 3D editor, and then, automatically computed 
2D sewing patterns that match the desired 3D form are generated. In 
addition, image-based virtual try-on networks [42–45] have absorbed 
the attention of many researchers because they allow garment recovery 
and transfer from 2D images. Wang [5] regarded garment pattern 
adjustment as a nonlinear optimization problem and directly minimized 
the object function that evaluates the fitting quality. Although the sys
tem performed sewing pattern adjustment with efficiency and precision, 
it could not modify garment patterns properly if the difference between 
the body shapes was significant. 

3. Overview 

3.1. Problem formulation 

Considering that the garment style of different sewing patterns varies 
markedly, when stitched onto the human body, garments will present 
folds or wrinkles details of various forms. In addition, garments will also 
present the overall drape commonly caused by variations in body shape. 
Fig. 3 illustrates the cloth deformation of garment instances from the 
source to the target body. Regarding the four garments shown in Fig. 3, 
due to the change in body shape, the abdomen and hip of each garment 
undergoes significant deformation (encoded in hot colors), while the 
other parts remain largely in the original shape. Our method starts from 
an assumption: cloth deformation is composed of two components: high- 
frequency details (e.g. folds and wrinkles), which varies with different 
type of garments, is called style-dependent deformation; low-frequency 
characteristics (e.g. the overall drape of the garment), which is shared 
by different kind of garments, is called shape-dependent deformation. 

Following the formulation and the notion proposed in DRAPE, we 
use deformation gradients [6,28,46] to represent deformations between 

garment meshes. This allows our model to decouple deformations due to 
body shape and deformations induced by garment style. 

Deformation gradients are linear transformations that align trian
gular faces between a source garment GSrc and its simulated mesh under 
the target body G̃Tar sharing the same topology. Suppose that GSrc is a 
mesh with T triangles, (GSrc, G̃Tar) can be written as: 

⎧
⎨

⎩

GSrc =
⋃T

t=1

(

x→t,1, x→t,2, x→t,3

)

G̃Tar =
⋃T

t=1

(

y→t,1, y→t,2, y→t,3

)

,

(1)  

where ( x→t,1, x→t,2, x→t,3) represents the face of a given triangle t in GSrc,

x→t,k(k= 1,2, 3) are the vertices of triangle t, ( y→t,1, y→t,2, y→t,3) represents 

the face of triangle t in G̃Tar and y→t,k(k= 1, 2,3) are the corresponding 
vertices. Our goal is to solve the following equation: 
[

Δ y→t,2,Δ y→t,3,Δ y→t,4

]

= Qt

[

Δ x→t,2,Δ x→t,3,Δ x→t,4

]

, (2)  

where Qt is a 3 × 3 linear transformation of triangle t and 
Δ x→t,k(k= 2, 3,4) is: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ x→t,k = x→t,k − x→t,1, k = 2, 3

Δ x→t,4 =

(

x→t,2 − x→t,1

)

×

(

x→t,3 − x→t,1

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

| x→t,2 − x→t,1| × | x→t,3 − x→t,1|

√

. (3) 

The fact that Qt is applied to the edge vectors makes it translation- 
invariant and each linear transformation encodes the change in orien
tation, scale and skew of triangle t. The introduced virtual edge [46], 
Δ x→t,4 adds the directional information of the triangular faces, making 
the problem well constrained. 

The key idea of our method is to learn a common deformation space 
that is independent of the garment style but shared by different type of 
garments. To do so, we define Qt as combination of linear trans
formations, each corresponding to different aspects of the model. We 
factor Qt into style-dependent deformation and shape-dependent 
deformation: 

Qt = Wt⋅St, (4) 

Wt is the style-dependent term, which is garment type specific. St is 
the shape-dependent term, which is shared by different garments. 

Our goal is to separate shape-dependent deformation from cloth 

Fig. 2. Basic fitting strategies. Left: simulated garment on the source body; middle: simulated garment on the target body; right: direct deformation transfer from the 
source to target body using deformation gradients between source and target body. 
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deformation, so Wt is identity and for a given mesh we can use Qt = St to 
generate a 3D draped garment that fits the target body but retains the 
original wrinkles. Since the deformation is represented as per-triangle 
transformations, triangles may separate after applying cloth deforma
tion onto the GSrc. We solve for the vertex coordinates that best match 
the deformed triangles in a least squares sense to assure a consistent 
mesh: 

argmin
y→1 ,…, y→V

∑T

t=1

∑

k=2,3
‖ Wt⋅St⋅Δ x→t,k − Δ y→t,k ‖

2. (5)  

3.2. Technical framework 

Fig. 4 demonstrates our technical architecture, and each part is 
explained as follows:  

(a) Data Generation: We select banana-shaped body as source body 
and pear-shaped body as target body to perform garment transfer 
(see source and target body in Fig. 4). Taking the source body as 
the base size, we make various garment patterns following the 
industrial garment-making process and we use a physical simu
lator to stitch the garment patterns onto the source and target 
bodies, obtaining draped garment instances for the source and 

Fig. 3. Visualizing cloth deformation from the source to the target body. Left: simulated garment on the source and the target body (noted as GSrc and G̃Tar ,

respectively); right: front and back view of the garment examples. Per-vertex deformation are illustrated with hot/cold colors, representing large/small dis
tance variations. 

Fig. 4. Given a source body and its corresponding simulated garment, we present a method to transfer source garment to target body with distinctive body shape, 
preserving source design. To handle garments with different topologies, we propose embedding cloth deformation into the body. At the heart of our method is a 
decomposition of style-dependent term and shape-dependent term from embedded cloth deformation using an encoder-decoder network. By learning a shared 
deformation space, we eliminate style-dependent deformation from embedded cloth deformation so that the reconstructed cloth deformation is shape-related only. At 
the garment transfer phase, we use the learned shape-related cloth deformation to generate garment that fits the target body but still preserves source design. Once 
our shape-related deformation is learned, our method can transfer new garments with arbitrary topologies. 
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target body (see source and target garment in Fig. 4). Fig. 6 shows 
our constructed garment data set. Then, we use deformation 
gradients to represent cloth deformation from GSrc to G̃Tar. Since 
different garments do not share the same topology, we propose 
embedding cloth deformation into the body to obtain a dimen
sional consistent deformation representation, which is achieved 
by matching the shortest distance between garment triangles and 
body triangles. The embedded cloth deformation is then fed into 
the garment transfer network for learning. For more details 
please refer to Section 4  

(b) Garment Transfer Network: We separate the shape-dependent 
deformation from embedded cloth deformation using an 
encoder-decoder network. Given the embedded cloth deforma
tion as input, the encoder tries to generate a compressed repre
sentation of the cloth deformation. In this process, we expect the 
network to encode shape-dependent deformation only. Then, the 
decoder reconstruct cloth deformation from the shared defor
mation space to obtain shape-related cloth deformation. For de
tails about how this is achieved please refer to Section 5. Once the 
shape-related cloth deformation is learned, we can use it to 
deform a new source garment with arbitrary topology. The 
transferred garment both fits the target body shape and preserves 
the source design. In Section 6, we qualitatively and quantita
tively evaluated our method. 

4. Deformation gradient embedding 

In Section 3.1 we use deformation gradients to represent deforma
tion from GSrc to G̃Tar. Let the number of garment patterns in the training 
set be N; then, the training set GSample can be written as: 

GSample =
⋃N

i=1

(

G(i)
Src, G̃

(i)
Tar

)

, (6)  

where (G(i)
Src, G̃

(i)
Tar) represents the ith group of garment instances sharing 

the same topology. Suppose that (G(i)
Src, G̃

(i)
Tar) has Ti triangles, the corre

sponding cloth deformation is a 3× 3× Ti-dimensional matrix, making 
it not suitable for learning tasks because the network usually takes a 
fixed-size data as input. One possible solution is to use aligned 3D 
garment meshes to get a dimensional-consistent data space, but this 
approach will limit the versatility of model because most of garment 
meshes are not homogeneous in an actual application scenarios. 

To handle garments with different topologies, we propose embedding 
deformation gradients into the body. This is achieved by matching the 
shortest distance between body triangles and garment triangles. Let |M|

be the number of triangles of body, then, for a given garment G, we build 
two maps of triangle indices from cloth to body and body to cloth 
respectively: 

BodyToCloth =
⋃|M|

α=1
argmin

α,β

⃒
⃒
⃒PM,αPG,β
̅̅̅̅̅→

⃒
⃒
⃒

ClothToBody =
⋃T

β=1
argmin

β,α

⃒
⃒
⃒PG,βPM,α
̅̅̅̅̅→

⃒
⃒
⃒, (7)  

where BodyToCloth records the triangle indices from body to cloth for 
garment instance group (GSrc, G̃Tar), and it is used for building embedded 
cloth deformation; ClothToBody records the triangle indices from cloth 
to body for garment instance group (GSrc, G̃Tar), and it is used for 
building the recovered cloth deformation; PM,α is the centroid co
ordinates of triangle α in M; PG,β is the centroid coordinates of triangle β 
in G. Algorithm 1 introduces the steps of deformation gradient 
embedding. 

For each garment type in GSample, we perform deformation gradient 
embedding. The embedded cloth deformation B is a |M| × 3 ×

In
pu
t:
so
ur
ce
bo
dy

M
,a
ga
rm
en
ti
ns
ta
nc
e
gr
ou
p
(G

S
rc
,G̃

T
ar
).

O
ut
pu
t:
em

be
dd
ed
cl
ot
h
de
fo
rm
at
io
n,
no
te
d
as
B.

C
om

pu
te
cl
ot
h
de
fo
rm
at
io
n
m
at
rix

C
∈R

T
×3
×3
fr
om

G
S
rc
to
G̃
T
ar
;

In
iti
al
iz
e
an
|M
|×

3
×3

di
m
en
si
on
al
m
at
rix

B
as
th
e
em

be
dd
ed
cl
ot
h
de
fo
rm
at
io
n
;

C
om

pu
te
Bo
dy
T
oC
lo
th
us
in
g
M
an
d
G
S
rc
;

fo
re
ac
h
bo
dy
_t
ri
an
gl
e
in
M
do

Se
ar
ch
(b
od
y_
tr
ia
ng
le
,c
lo
th
_t
ri
an
gl
e)
fr
om

Bo
dy
T
oC
lo
th
;

U
pd
at
e
B[
bo
dy
_t
ri
an
gl
e]
w
ith

C
[c
lo
th
_t
ri
an
gl
e]
;

en
d

A
lg

or
it

hm
 1

.
D

ef
or

m
at

io
n 

gr
ad

ie
nt

 e
m

be
dd

in
g.

  

M. Shi et al.                                                                                                                                                                                                                                      



Graphical Models 115 (2021) 101106

6

3-dimensional matrix for all triangles, which is then concatenated into a 
single column vector γi ∈ R|M|⋅3⋅3×1. Finally, all γi(i= 1,…, n) are 
collected into a matrix Γ = [γ1,…, γN] as the network input. 

5. Shape feature encoding 

5.1. Feature representation 

In Section 3.1 we factor cloth deformation into style-dependent 
deformation term Wt (considered as high-frequency deformations), 
and shape-dependent deformation term St (considered as low-frequency 
deformations). The key idea of our model is that high-frequency de
formations are garment type-specific but low-frequency deformations 
are shared by different garments, and we expect the reconstructed cloth 
deformation to contain low-frequency deformations only. We implicitly 
eliminate Wt from Qt = Wt⋅St so that Qt = St. This is achieved by 
learning a shared deformation space using a encoder-decoder network. 

The network aims to learn a function set fW,b(Γ) = Γ̃ ≈ Γ so that Γ̃ 
constantly approximates Γ, where Γ is the original cloth deformation 
and Γ̃ is the shape-related cloth deformation. The task of the encoder is 
to learn a compressed representation of the cloth deformation, building 
a shared feature space of body shapes. Then, the decoder is trained to 
replicate the original cloth deformation from the latent space. We 
impose constraints on the size of latent space so that the autoencoder 
cannot reconstruct all the deformation, more specifically, we expect it to 
lose high-frequency details. The loss function of our network is a simple 
mean-squared error (MSE) term: 

‖ Γ − Γ̃‖2
F, (8)  

where Γ̃ is the learned shape-related cloth deformation. 
As mentioned above, by learning fW,b(Γ) = Γ̃ ≈ Γ, our garment 

transfer network tries to reconstruct cloth deformation with low- 
frequency deformations only. The reconstructed cloth deformation, Γ̃,
is a |M|⋅3⋅3× N-dimensional matrix. At the garment transfer phase, each 
γ̃i(i= 1,…,N) in Γ̃ is reshaped back to a |M| × 3× 3-dimensional matrix 
B̃i, which is then applied onto GSrc to generate a new garment GTar that 
fits the target body but remains original high-frequency details. This step 
involves transmitting embedded cloth deformation back to a garment- 
specific space. Algorithm 2 describes the inverse embedding process. 

5.2. Extension to multiple target bodies 

Though our workflow supports garment transfer for different body 
shapes, the learned shared deformation space has to be retrained per 
body shape. When performing garment transfer, it is often desirable to 
control the types of body shape to be generated. To handle a situation 
when there are multiple target bodies, we impose conditional con
straints on input data. Since the shape types are discrete by nature, so we 
represent them using one-hot labels. More specifically, shape conditions 
are incorporated as additional input with Γ. More details are provided in 
Section 6.4. 

6. Evaluation 

We propose embedding deformation gradients into the body to 
represent per-triangle deformation from GSrc to G̃Tar using M in Section 
4. Then, by decoupling shape-dependent deformation and style- 
dependent deformation from embedded cloth deformation, our 
method learns a shared deformation space that is invariant to garment 
style in Section 5. We now qualitatively and quantitatively evaluate the 
effectiveness of our method. We performed experiments on a consumer 
laptop with an Intel Core i7-8750H 2.2 GHz processor, 16 GB of RAM 
and an NVIDIA GeForce RTX 2070 with Max-Q Design Graphics Card. 
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6.1. Experimental settings 

We first provide the details of how the data are generated and of the 
network structure: 

Data generation. We used DAZ Studio software [47] to generate 
A-pose mannequins of different body shapes. We built banana-shaped 
((a) in Fig. 5) and pear-shaped ((b) in Fig. 5) as source and target 
body respectively. Our garment data set consists of 15 basic-style gar
ments (left in Fig. 6) for training and 5 complex-style garments (right in 
Fig. 6) for evaluation. We selected different types of sewing patterns to 
make the training examples, which aims to cover various kinds of 
clothing commonly seen in daily life. All garment patterns are designed 
and simulated using the Marvelous Designer software [12]. The garment 
meshes in garment data set do not share the same topology (e.g., the 
number of triangles is 10 628 in a sweater and 28 044 in a shift dress). 

Network architecture. We implemented deformation gradient 
embedding in C++, and the cloth deformation of each garment was 
aligned to a |M|⋅9-dimensional vector (|M| = 37744 in our experiment). 
Our shape feature encoding network is composed of linear layers with 
sigmoid activation function. The encoder takes an |M|⋅9 × N-dimen
sional matrix as input and translates it to a 30× N-dimensional latent 
space to represent shape feature descriptor. Then, the decoder tries to 
replicate the original cloth deformation from the shared deformation 
space. We use scaled conjugate gradient descent for the network back- 
propagation. It takes about 35 minutes for our network to finish 
training with the setting of 1000 epochs. 

6.2. Qualitative evaluation 

Each column in ̃Γ represents the reconstructed cloth deformation of a 
specified garment. By simply applying the reconstructed shape-related 
cloth deformation to its corresponding garment mesh using Algorithm 
2, our workflow can generate garments that fit the target body but 
preserve source design. Fig. 7 demonstrates the garment transfer result 
on the training set. Our method successfully decoupled style-dependent 
deformation and shape-dependent deformation. 

One possible application of our garment transfer workflow is virtual 
fitting. As mentioned above, basic-style garments are used for learning 
the shape-related cloth deformation. Once the training process for a 
given body shape is finished, we can apply the learned cloth deformation 
to a complex-style garment to perform garment transfer. Fig. 8 shows the 
garment transfer results on the testing set. From left to right: Shift Dress, 
Formal Dress, Wrap Dress, Conjoined Shorts, T-shirt. 

Now, we evaluate our shape feature encoding network. We can 
deform a specified source garment (see (a) in Fig. 9) onto the target body 
(see (b) in Fig. 9) using its corresponding cloth deformation, and we can 
also deform garments of other designs (see (c)-(d) in Fig. 9). However, 
since the source design of different garments varies markedly, it is 

difficult to obtain the desired appearance by directly applying the cloth 
deformation of one garment onto other garments (see (c) in Fig. 9). Our 
deformation feature encoding network learns a shared deformation 
space from cloth deformation, which enables garment transfer among 
garments of different designs (see (d) in Fig. 9). 

We also invited a professional fashion design studio to manually 
transfer a garment from the source to the target body. Taking the wrap 
dress as reference, the pattern grader took more than ten hours to make 
2D graded sewing patterns and restore the wrinkle details of the 3D 
garment on the target body (right in Fig. 10). We ask the pattern grader 
to do this because customers usually want the transferred garment to 
keep exactly the same design as source garment. According to the sur
vey, most of the time was spent on handling the wrinkle elements, 
because the designer needed to repeatedly adjust the sewing pattern 
until the draped garment accorded with the desired shape. Compara
tively, it took less than ten seconds for our garment transfer workflow to 
generate the draped garment (middle in Fig. 10). With the help of our 
garment transfer workflow, customers can quickly preview the fitting 
effects before real garments are designed and manufactured, thus saving 
time and design cost. 

6.3. Quantitative evaluation 

To quantitatively measure the difference in wrinkle details before 
and after garment transfer, we computed the mean discrete curvature of 
our transferred garments GTar and simulated garment G̃Tar for the target 
body. The mean discrete curvature is a tool for measuring the variation 
between the source and target mesh. The lower the mean discrete cur
vature is, the less the garment details has changed. The mean discrete 
curvature between GSrc and GTar is : 

MDC(GSrc,GTar) =
1
T
∑T

s=1
|rGSrc (s) − rGTar (s)|, (9)  

in which rGSrc (s) represents the discrete curvature of the sth vertex in GSrc 
and rGTar (s) represents the discrete curvature of the sth vertex in GTar. 
rG(s) can be expressed as: 

rG(s) = argmin
i,j

ni
→⋅nj

→

i, j ∈ p(s), 1 ≤ i < j ≤ |p(s)|,
(10)  

where p(s) is the triangle set adjacent to the sth vertex. ni
→ and nj

→

represent the unit normal of the ith and jth triangles in p(s). |p(s)| is the 
number of triangles in p(s). 

Since our ultimate goal is to make the transferred garment looks 
similar to the source, we also made user study on visual similarity be
tween source and transferred / simulated garment. 18 subjects were 
asked to score the degree of visual similarity (0–9) between source and 

Fig. 5. We construct (a) banana-shaped body as source and (b) pear-shaped body as target for evaluation. The body is shown from a front view and a side view. 
Compared with the source body, the local shape (abdomen and hip) of target body has changed significantly. 
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deformed / simulated garment. Taking GSrc as reference, 0 represents the 
wrinkle details on the G̃Tar (or GTar) looks completely different from the 
reference, and 9 represents the wrinkle details on the G̃Tar (or GTar) looks 
exactly the same as the reference. 

Table 1 summarizes the statistics of the garment examples in the test 
set. The mean discrete curvature of the simulated garments on the target 
body is much greater than ours, and our garment transfer can be finished 
within a short time period even on a consumer laptop, which indicates 
that our garment transfer workflow can deform garments onto the target 
body both with efficiency and can preserve the source design. In the 
visual similarity study, ScoreTrans for each garment is much higher than 
that in ScoreSim, which indicates that GTar looks more similar to GSrc. 

Previous works like [4,5] formulated garment transfer as a con
strained optimization problem and solved it through iterative quadratic 

minimization, which takes hundreds of seconds. Comparatively, our 
learning-based garment transfer workflow only takes seconds to finish 
even for a complex-style garment with 156K faces (the Wrap Dress in our 
experiment). Besides, Brouet et al. [4] is sensitive to the setting of tight 
region tolerance, which varies with input body and garment model. 
Once our shared deformation is learned, we can use it to generate 
transferred garments that fit the target body but still preserve source 
design without additional modeling setup. [5] is developed for human 
bodies with limited differences from the source body, which will 
struggle in a case when the target body is very different from the source 
body. Our workflow enables design-preserving garment transfer even 
for mannequins with distinctive body shapes. 

Fig. 6. Composition of garment dataset. Left: garments used for training; right: garments used for testing.  

Fig. 7. Garment transfer on the training set. (a) simulated garment on the source body (GSrc); (b) our transfer result from the source to target body (GTar); (c) 
simulated garment on the target body (G̃Tar); (d) transferred garment using decomposed high-frequency deformation term. In contrast to GSrc, G̃Tar revealed the 
outline of the target body while losing the original garment design. Our transferred results GTar not only have the somatotype characteristics of the target body but 
also preserve the source design. 
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6.4. Multiple target shapes 

Given a sewing pattern and its corresponding simulated garment on a 
source body, our workflow can perform garment transfer from the 
source body to mannequins with distinctive body shapes. The experi
ment results show that our pipeline works well on a single body-shape 
case. Now we evaluate our method on bodies with more shape varia
tions. The body is represented using SMPL [48]. SMPL is a generative 
model that factors the body into shape (noted as β) and pose (noted as θ) 

parameters. We obtained A-pose θ from BMLmovi [49,50] dataset. Then, 
we sampled β1,…, β− 4 from range [4,1] to generate bodies with 6 
different shape variations (noted as M(θ, β1),…,M(θ, β− 4)). Shape con
ditions are encoded as one-hot labels from 000000 to 100000. The 
generated body meshes share the same topology (|M|=13776). We take 
M(θ, β1) as source body and others as target to perform garment transfer. 
We trained network using the method proposed in Section 5.2. Since the 
deformed garment reflects only the general outline of the target body, it 
is difficult to guarantee that the transferred garment is always 

Fig. 8. Garment transfer on the testing set. (a) simulated garment on the source body (GSrc), which showcase very rich wrinkling patterns; (b) our transfer result from 
the source to target body (GTar); (c) simulated garment on the target body (G̃Tar). With our garment transfer workflow, all wrinkles on GSrc are correctly transferred to 
the target body shape without noticeable artifacts. 

Fig. 9. Validation of the shape feature encoding network. (a) simulated garment on the source body; (b) transferred garment on the target body; (c) garment transfer 
before shape feature encoding; (d) garment transfer after shape feature encoding. Details in (c) and (d) are enlarged to show the difference. 
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collision-free. To eliminate the penetration between the garment mesh 
and body surface, we iteratively update the vertex position until the 
garment vertices lie completely outside the target body with the 
Marvelous Designer software [12]. Fig. 11 demonstrates fitting effect 
from M(θ, β1) to M(θ,β0),…,M(θ,β− 4). 

7. Limitation and future work 

In this paper, we presented an automatic, design-preserving, efficient 
garment transfer workflow that enables unaligned garment retargeting 
between characters with significant differences in body shape. This is 
achieved by learning a shared deformation space from the embedded 
cloth deformation. Unlike existing methods, our method can generate 

design-preserving garments that showcase very rich wrinkle details with 
both accuracy and efficiency. However, our system has several 
limitations:  

(i) We embed cloth deformation into the body by matching triangles 
with shortest distance, which depends on the mesh quality. If the 
garment or body has a low-resolution, the deformation of some 
triangles would be lost. While we use a very high-resolution 
garment and body mesh, the garment transfer can be done in 
seconds on a consumer laptop.  

(ii) Our goal is to generate design-preserving 3D draped garments for 
distinctive body shapes before garments are made. We do not 
consider inverse pattern design problem. How to accurately 

Fig. 10. Manual vs. automatic. Left: simulated garment on the source body; middle: our transferred result; right: manually graded garment produced by a 
garment designer. 

Table 1 
Statistics of the examples. #Vert: Number of vertices in the example. #Tri: Number of triangles in the example. ScoreTrans:Score of visual similarity between GSrc and 
GTar . MDCTrans: Mean discrete curvature between GSrc and GTar . ScoreSim: Score of visual similarity between GSrc and G̃Tar . MDCSim: Mean discrete curvature between GSrc 

and G̃Tar . T: Total time for deforming GSrc to GTar .  

Example Name #Vert #Tri ScoreTrans↑  MDCTrans↓  ScoreSim↑  MDCSim↓  T(s)

Shift Dress 14 149 28 004 6.0 0.020 3 2.6 0.054 1 0.764 
Formal Dress 23 262 46 081 6.3 0.022 3 4.0 0.064 0 1.301 
Wrap Dress 78 169 15 605 4 6.8 0.010 8 2.7 0.115 6 5.928 
Conjoined Shorts 13 289 26 288 6.2 0.022 4 1.4 0.193 9 0.711 
T-shirt 41 970 83 814 6.5 0.011 9 2.3 0.079 7 2.822  

Fig. 11. Retargeting a source garment to mannequins with different body shapes, the blue dress is simulated garment on source body (M(θ, β1)) and the yellow 
dresses are transferred garments on different target bodies (from left to right: M(θ,β0),…,M(θ,β− 4)). Even if the target body is very different compared with the source 
body, our solution can still preserve the source design and wrinkle details. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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translate these draped garments into graded sewing patterns 
needs to be further studied. 
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